Pinpointing the Side-Channel Leakage of Masked AES Hardware Implementations
نویسندگان
چکیده
This article starts with a discussion of three different attacks on masked AES hardware implementations. This discussion leads to the conclusion that glitches in masked circuits pose the biggest threat to masked hardware implementations in practice. Motivated by this fact, we pinpointed which parts of masked AES S-boxes cause the glitches that lead to side-channel leakage. The analysis reveals that these glitches are caused by the switching characteristics of XOR gates in masked multipliers. Masked multipliers are basic building blocks of most recent proposals for masked AES S-boxes. We subsequently show that the side-channel leakage of the masked multipliers can be prevented by fulfilling timing constraints for 3 · n XOR gates in each GF (2) multiplier of an AES S-box. We also briefly present two approaches on how these timing constraints can be fulfilled in practice.
منابع مشابه
Successfully Attacking Masked AES Hardware Implementations
During the last years, several masking schemes for AES have been proposed to secure hardware implementations against DPA attacks. In order to investigate the effectiveness of these countermeasures in practice, we have designed and manufactured an ASIC. The chip features an unmasked and two masked AES-128 encryption engines that can be attacked independently. In addition to conventional DPA atta...
متن کاملSide-Channel Leakage in Masked Circuits Caused by Higher-Order Circuit Effects
Hardware masking is a well-known countermeasure against Side-Channel Attacks (SCA). Like many other countermeasures, the side-channel resistance of masked circuits is susceptible to low-level circuit effects. However, no detailed analysis is available that explains how, and to what extent, these low-level circuit effects are causing side-channel leakage. Our first contribution is a unified and ...
متن کاملFormal Verification of Masked Hardware Implementations in the Presence of Glitches
Masking provides a high level of resistance against side-channel analysis. However, in practice there are many possible pitfalls when masking schemes are applied, and implementation flaws are easily overlooked. Over the recent years, the formal verification of masked software implementations has made substantial progress. In contrast to software implementations, hardware implementations are inh...
متن کاملAffine Masking against Higher-Order Side Channel Analysis
In the last decade, an effort has been made by the research community to find efficient ways to thwart side channel analysis (SCA) against physical implementations of cryptographic algorithms. A common countermeasure for implementations of block ciphers is Boolean masking which randomizes by the bitwise addition of one or several random value(s) to the variables to be protected. However, advanc...
متن کاملHow to Estimate the Success Rate of Higher-Order Side-Channel Attacks
The resistance of a cryptographic implementation with regards to side-channel analysis is often quantified by measuring the success rate of a given attack. This approach cannot always be followed in practice, especially when the implementation includes some countermeasures that may render the attack too costly for an evaluation purpose, but not costly enough from a security point of view. An ev...
متن کامل